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Abstract
A parameter-free approach based on ab initio density functional calculations
is shown to describe the phase stability and order–disorder transformations
in Pd–V substitutional alloys and intermetallic compounds with remarkable
accuracy, allowing first-principles calculations of the complete alloy phase
diagram. The investigations are based on electronic structure and total-
energy calculations for ordered compounds and disordered alloys (treated
in a supercell approximation) using gradient-corrected exchange–correlation
functionals and a plane-wave-based all-electron method. All calculations
involve a complete optimization of all structural degrees of freedom. The
calculation of the free energies of the competing phases is based on rather
simple mean-field descriptions of long- and short-range-ordering phenomena,
using concentration-dependent interchange and shell interaction parameters. In
addition, the electronic structures of ordered compounds and of substitutional
alloys have been analysed.

1. Introduction

The ability to predict the structure of metallic alloys and the physico-chemical properties of
the stable phases as a function of composition and temperature is of considerable scientific
and technological interest. The first step is to determine the ground states, i.e. the stable
phases at zero temperature, as a function of composition by performing a series of ab initio
total-energy calculations for a those structures that are suspected of being ground states or
excited states with a small energy difference with respect to the ground state. Evidently, the
success depends critically on the ability to guess the correct minimum-energy structures. The
problem is considerably simplified if the search is restricted to those intermetallic structures
which can be considered as superstructures of the common structures of the pure metallic
elements, i.e. either fcc, bcc or hcp. In such a case the problem of enumerating the possible
low-energy superstructures is much easier and can, in favourable cases, even be solved exactly.
The approach commonly used is to project the problem on a three-dimensional ‘Ising-like’
Hamiltonian and expand the internal energy in terms of composition-independent ‘effective
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cluster interactions’ (ECIs) [1, 2]. The ECIs have been treated in the past as empirical
adjustable parameters, and global searches for ground states for all possible choices of the
ECIs have been performed [3, 4]. Nowadays, the ECIs may be derived from ab initio total-
energy calculations for selected model structures and used for obtaining the ground states for
a specific alloy system [5–7]. The second step in a phase diagram calculation consists in
using the ECIs to calculate the configurational entropy of possible disordered phases using
a statistical-mechanical approach such as the mean-field approximation, the cluster-variation
method or Monte Carlo simulations to determine the free energies of the competing phases
(adding, as far as necessary, vibrational and electronic contributions) and finally the coexistence
lines in the composition–temperature phase diagram. The problem with such an approach is
that complex electron-mediated interactions are mapped onto a classical Hamiltonian and that
there is no guarantee that this mapping is unique or rapidly convergent. Since parameters are
extracted from calculations on systems with small unit cells, it is possible that the interactions
contain terms favouring such structures over the disordered phases. The general tendency to
overestimate the critical temperatures for ordering transitions seems to confirm this suspicion.

The approach based on ECIs starts from the ordered intermetallic compounds and uses the
information on the effective interatomic interactions to estimate the energetics of the disordered
phases. An alternative approach is to start from a model of the disordered alloys, treated in some
effective-Hamiltonian approximation such as the coherent potential approximation (CPA), and
to investigate the instability of the ideal random alloys with respect to either phase separation
or to the formation of some ordered phase. This can be performed using the generalized
perturbation method (GPM) where the interaction parameters for an Ising-like description are
derived by expanding the electronic energy about the random state treated in the CPA [1], or
using the mean-field concentration functional (MF-CF) theory [8] based on an adaptation of
the classical density functional theory of fluids to a lattice gas model of binary alloys. The
advantage of both the GPM and the MF-CF approaches is that they allow one to account
for the concentration dependence of the effective interatomic interactions. Both approaches
encounter difficulties when applied to strongly interacting alloys; both are single-site theories
neglecting the effect of fluctuations in the local environment and possible lattice distortions in
the disordered phases.

Both groups of methods have so far been applied almost exclusively to alloy systems
where all phases can be considered as either solid solutions or ordered superstructures on a
single underlying simple lattice. Notable exceptions are the work of Fernández Guillermet
et al [9] on phase stabilities in the Pt–W system (where both fcc and bcc solid-solution phases
but no ordered intermetallic compounds have been considered), and the work of Lu et al [10]
on alloys of Cu with Rh, Pd, Pt and Au and on the Ni–Al systems. Among these alloys, only
CuAu has an fcc-based superstructure, while CuPt has the rhombohedral L11 structure and
CuPd and NiAl crystallize in the bcc B2 structure. The cluster expansion has been extended
to the calculation of the enthalpies of formation of these alloys, but only for Ni–Al has an
attempt been made to compute finite-temperature thermodynamic properties on the basis of
a simplified cluster expansion and has the Ni-rich half of the phase diagram been calculated.
The challenge evidently is to treat systems where phases based on more than one basic lattice
coexist with complex lattices that can be derived from neither of these elementary structures.

In the present paper we report on an attempt to construct the phase diagram of such
a complex alloy system from first principles. The Pd–V system has been chosen for our
investigations because

(i) due to the difference in occupation of the d band, Pd–V is a strongly interacting
system, having a relatively large energy of formation with an asymmetric dependence
on composition,
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(ii) the crystal structures of the two elements are different; hence both fcc and bcc solid
solutions must be considered,

(iii) the phase diagram shows at least one phase (PdV3 with the A15 structure) that cannot be
considered as a superstructure of the elemental lattices.

Hence the phase diagram is complex, but not so complex as to make the attempt at a full
ab initio calculation hopeless. We try to take full advantage of recent progress in ab initio
total-energy calculations:

(i) We consider a reasonably large number of candidates for the structures of the ordered
phases and perform a full structural optimization for all of these lattices. This certainly
leads to an improved accuracy of the predicted structural energy differences compared to
that of calculations neglecting differences in the volumes of formation and the relaxation
of the internal structural degrees of freedom.

(ii) Disordered alloys are modelled by large supercells containing 32 atoms, using different
randomly generated atomic configurations at least at some compositions. This adds to the
averaging over the 32 different lattice sites present already in a single model. For each
model, a full structural relaxation is performed, i.e. we account both for the fluctuations
in the local environment and for local atomic displacements from the ideal lattice. On the
other hand, we deliberately take a simple approach in the statistical-mechanical part of the
problem: we use a mean-field approximation with Bragg–Williams order parameters to
describe the effect of long-range ordering in those cases where the ordered superstructures
have energies lower than those of the random alloys, and Warren–Cowley order parameters
in the opposite case where short-range ordering is expected to dominate. For both models
the interaction parameters are derived from a fit to the calculated total energies. The
solid-state part of the complete Pd–V phase diagram has been calculated and the success
seems to confirm the strategy that we have adopted.

In addition, we present a detailed analysis of the electronic spectra of both ordered intermetallic
compounds and solid solutions.

2. Methodology

Ground-state energies and electronic structures of ordered intermetallic compounds and of
disordered alloys in the palladium–vanadium system have been calculated using the Vienna
Ab initio Simulation Package [11–14] based on local density functional theory. Disordered
alloys are represented by random atomic configurations in large 32-atom supercells with an
overall face-centred-cubic (fcc) or body-centred-cubic (bcc) structure (section 2.1). The effect
of long-range ordering (LRO) is described in the framework of Bragg–Williams theory [15]
(section 2.2). To consider short-range ordering (SRO) we use Warren–Cowley SRO parameters
[16] with a quadratic correction to the configurational entropy as proposed by Tsatskis [17]
(section 2.3). The interchange energy determining the energy and entropy of mixing as a
function of the LRO parameters, as well as the pair interactions determining the energetics
associated with SRO, are derived from the total energies of the supercells.

2.1. LDF calculations

VASP solves the Kohn–Sham equations of LDF theory in a plane-wave basis set. The electronic
ground state is determined via an iterative unconstrained band-by-band matrix-diagonalization
scheme based on a residual-minimization method (RMM) [14,18]. To calculate the new charge
density and potential after each iteration, an improved Pulay mixing is implemented [19]. To



3548 R Hirschl et al

account for the nonlocality in the exchange–correlation functional we used the generalized
gradient approximation (GGA) as proposed by Perdew and Wang (PW91) [20]. Brillouin-
zone integration is performed with Monkhorst–Pack grids [21] using a generalized Gaussian
smearing [22] for structural relaxations and the tetrahedron method with Blöchl corrections [23]
for the calculation of densities of states. All results have been checked for convergence with
respect to the number of k-points. The respective grid chosen for each of the calculations
depends on the number of atoms in the supercell; typical grids will be given in the sections
below. An energy cut-off of 250 eV is used throughout all calculations.

The electron–ion interaction is described by the projector augmented-wave (PAW) method
of Blöchl [24], as further improved by Kresse and Joubert [25]. In the PAW approach the exact
shape of the valence wavefunction is taken into account, which improves the description of
transition metals. The 3p states of vanadium are treated as valence states to guarantee a good
transferability of the potential.

The optimization of the atomic geometry is performed in two ways, depending on the
type of the unit cell. For cells having just one degree of freedom (cubic cells with atoms on
high-symmetry positions), the minimum of the energy versus the volume is found by fitting
several calculations at different volumes to a Murnaghan equation of state [26]. For all other
cells a quasi-Newtonian algorithm is used to relax cell size and shape as well as the positions
of atoms not on high-symmetry positions.

2.2. Long-range order

The main focus of our work is on the electronic and ground-state properties of the intermetallic
compounds and disordered alloys. Therefore only simple statistical approaches are used
for describing the effect of long- and short-range atomic ordering on the energetics of the
disordered alloys and for the construction of the phase diagram. To find the stable phase at
a given temperature and atomic concentration of the constituents, the free enthalpy or Gibbs
free energy �G of formation �G = �H − T �S has to be determined for all competing
phases by minimization of �G with respect to all structural degrees of freedom. Only the
configurational entropy has been considered in describing �S; all vibrational contributions to
the free energy of formation have been neglected. For completely disordered two-component
mixtures the configurational entropy is given by the ideal entropy of mixing. Ordering reduces
the configurational entropy. We describe long-range order on a given superlattice (fcc or bcc)
using the Bragg–Williams LRO parameter [15]

η = fα − xA

1 − xA
. (1)

Here fα is the fraction of α-sites occupied by atoms of type A and xA is the concentration
of A atoms. In the case of complete order, A and B atoms sit only on α- and β-sites of the
superlattice, respectively; therefore ηord = 1. Complete disorder is described by ηdis = 0. By
defining fβ as the fraction of β-sites occupied by A atoms, it is calculated to be

fβ = xA − cA

cB
xBη

with cA,B denoting the fractions of α- and β-sites, respectively. The configurational entropy
in the case of long-range order is then given by

�SLRO = −Nk{cA[fα ln fα + (1 − fα) ln(1 − fα)] + cB[fβ ln fβ + (1 − fβ) ln(1 − fβ)]}.
(2)

The variation of the energy of formation with the degree of LRO depends on the interatomic
interactions. Considering nearest-neighbour interactions only, the energy of formation for a
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completely disordered alloy is given by�E(η = 0) = NzxAxBWAB where z is the coordination
number and the interchange energy WAB is defined by WAB = 1

2 (VAA + VBB) − VAB with VIJ

being the pair interaction in an IJ pair. Within the Bragg–Williams mean-field approximation,
LRO provides an additional contribution of �E(η) = zWABη

2/4 to the energy of formation.
The degree of LRO in equilibrium is determined by minimizing �G with respect to η.

The interchange energy is determined from our total-energy calculations for the pure
metals and supercells of disordered alloys. VAA and VBB are calculated from the cohesive
energies of the pure metals, VAB and WAB can then be calculated for every given disordered
configuration. For the Pd-rich alloys the resulting interchange energies show an almost
perfectly linear increase with increasing V concentration; for details see below.

2.3. Short-range order

Short-range order is described by the Warren–Cowley SRO parameters [16, 27] defined by

αij = 1 − 〈pA
i p

B
j 〉

xAxB
(3)

where pA
i and pB

j are the probabilities of finding an atom of type A on position i and one of
type B on position j , respectively. The degree of order αn in the nth shell around a given atom
is found by averaging over all atoms in this shell. The αn can have positive as well as negative
values with −1 � αn,min � αn � αn,max � 1. αi = 0 corresponds to complete disorder.
|αn,min| and |αn,max| depend on the lattice and the concentrations of the constituents of the
alloy due to geometrical constraints [28,29]. SRO leads in a second-order approximation to a
quadratic correction of the LRO configurational entropy [17]:

�SSRO = �SLRO −Nk
1

4

∑
n

znα
2
n (4)

where zn is the coordination number for the nth shell. The energy of formation in the case of
SRO is calculated via the shell interaction energy Vn = 1

2 (VAA,n + VBBn
)− VAB,n (here VAA,n,

VBB,n and VAB,n are the interaction energies for two atoms of the respective types which are
nth-nearest neighbours):

�ESRO = NxAxB

∑
n

cnVn(1 − αn). (5)

The equilibrium SRO is again found by minimizing�Gwith respect to all αn (and η in the case
of additional LRO), taking into account the geometrical constraints on the values of the αn.

In our calculations we consider the interaction of atoms with two shells of nearest neigh-
bours. The energy of formation and the SRO parameters αn are known; hence the conc-
entration-dependent shell interaction parameters may be extracted by inverting equation (5).

3. Structure and stability of ordered intermetallic compounds

The fundamental problem in theoretical investigations of the phase stability of binary alloys
is the lack of a general algorithm for creating candidate structures. Many observed ordered
structures of intermetallic compounds are based on superstructures of the simple fcc, bcc and
hcp structures. If certain restrictive assumptions on the nature of the interactions between
the atoms are made, the possible structures may be enumerated. Exact results are available
for the cases of nearest- and second-nearest-neighbour interactions only; see for example
the review of Ducastelle [1]. However, this is not sufficient to account for all existing
structures, and it is known that to yield some observed structures further interactions have
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to be considered [3, 30, 31]. An analysis of fcc superstructures in palladium–vanadium alloys
has been performed by Wolverton and co-workers [6,7,32]. However, this approach excludes
structures based on entirely different crystal lattices.

A more empirical approach in the search for candidate structures is to investigate the
‘chemical vicinity’ of Pd–V as given by the Pettifor structure maps [33,34]. Structures realized
for chemically similar alloys are expected to represent realistic candidate structures. Figure 1
shows the Pettifor tables for all stoichiometries that are not empty around Pd–V. In the following
we discuss each stoichiometry separately.

PdV3 Pd3V

PdV2 Pd2V

PdV

Ta Nb V W Mo

Ta Nb V W Mo Ta Nb V W Mo

Ni

Pt

Pd

Au

Ni

Pt

Pd

Au

Ni

Pt

Pd

Au

CuTi

AuCd
AuCu

AuCd
AuCd

Fe7W6 Fe7W6

CrFe

Al2Cu

AlB2

MoPt2 MoPt2 MoPt2

MoPt2 MoPt2 MoPt2 MoPt2

MoSi2 MoPt2 MoPt2

Cr3Si Cr3Si
Cr3Si

AuCu3

Cr3Si Cr3Si

Cr3Si Cr3Si
Cr3Si

AuCu3

Cr3Si

Cr3Si

Al3Ti Al3Ti Al3Ti

Cu3Ti Cu3Ti
AuCu3

Al3Ti
Ni3Sn

Al3Ti

Cu3Ti

Al3Ti

Cu3Ti
Al3Ti Cu3Ti

Figure 1. Pettifor tables for different stoichiometric alloys in the ‘chemical vicinity’ of the
palladium–vanadium alloys. The labels name the prototypes of the stable structures found exp-
erimentally. Multiple entries denote that more than one structure was found for a compound. Two
structures separated by a horizontal line indicate the identification of a low-temperature (bottom)
and a high-temperature (top) phase.
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3.1. Pd3V

The ordered superstructures for A3B alloys stabilized by nearest- and next-nearest-neighbour
interactions are the Al3Ti (D022), AuCu3 (L12) and Al3Zn (D023) structures based on an fcc
lattice, the Cu3Ti (D0a) and Ni3Sn (D019) structures based on an hcp lattice and the AlFe3

(D03) structure based on the bcc lattice [1]. As can be seen in figure 1, all but D03 and
D023 are realized in the chemical vicinity of Pd3V, although the AuCu3 structure occurs only
as a high-temperature phase of Pt3V. Polymorphism is also reported for Ni3Ta and Ni3Nb,
which crystallize in the Al3Ti as well as the Cu3Ti structure. In the case of Ni3Ta the two
structures were identified as high- and low-temperature phases, respectively. Therefore these
four structures are investigated as possible structural variants of Pd3V.

The four structures are very similar. All of them are superstructures of close-packed lattices
and the twelve nearest neighbours of every vanadium atom are palladium atoms. The cubic
AuCu3 (L12) and the hexagonal Ni3Sn (D019) structures are based on different stacking variants
of close-packed layers with A3B stoichiometry within each layer, ABC stacking leading to
cubic and AB stacking to hexagonal symmetry. In both structures A has twelve B neighbours,
while B has eight B and four A neighbours. In the L12 structures all atomic positions are
fixed by symmetry; in the D019 structure the axial ratio is a free parameter. Similarly the Al3Ti
(D022) and Cu3Ti (D0a) structures may be considered as different stacking variants of the same
basic structure (cf. figure 2). In fact the two structures can easily be transformed into each
other by shifting the atoms of every second hcp (Cu3Ti) layer in the z-direction from its hcp
to its neighbouring fcc hollow and vice versa. For the Al3Ti structure this leads to a unit cell
composed of two tetragonally distorted AuCu3 cells with a step-shift at the interface. In terms
of the stacking of the close-packed layers, this leads to a long-period stacking sequence, but
the constraint of tetragonal symmetry reduces the variable structural parameters to the axial
ratio. In the Cu3Ti structure the stacking of the close-packed layers is AB, but the distortion
of the hexagonal layers reduces the symmetry to orthorhombic such that there are six variable
structural parameters (b/a, c/a and four internal positional parameters; cf. table 1). The
Al3Zn (D023) structure can be considered as consisting of alternating L12 and D022 lattices.
The nearest-neighbour coordination is the same in all five structures; the complete avoidance
of direct neighbours of the minority atoms appears to be one of the determining structural
principles.

Table 1. Positions of the atoms in the energetically most stable Pd3V and Pd2V ordered phases at
T = 0 K. Our ab initio results are compared to experimental values where available.

Experiment Theory

Atom Position x y z Reference x y z

Cu3Ti
V 2a — 0 0 0.659
Pd1 2b — 0 1/2 0.347
Pd2 4f — 0.249 0 0.166

MoPt2
V 2a 0 0 0 [59] 0 0 0
Pd 4g 0 0.340 0 0 0.339 0

Typical k-point grids for the calculation of the ground-state energy in unit cells consisting
of eight atoms with aspect ratios close to unity are 8 × 8 × 8. The optimized lattice constants
of all structures are compiled in table 2, together with the experimental values of the stable
structures. Table 2 and figure 3 present also the calculated energies of formation.
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s23
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Pd B Pd BPd B
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V-V

L1

L2

L

�

Pd-Pd
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5

3

Figure 2. Stacking sequences for the Al3Ti (D022) and Cu3Ti (D0a) structures: vanadium atoms
in subsequent layers are on positions 1234567 · · · and 12121 · · ·, respectively. D022 consists of
two slightly elongated fcc cells (aspect ratio a/c = 1.014); the atoms are placed on high-symmetry
positions which leaves only one free parameter (a/c) that changes some of the distances indicated.
The D0a structure has a slightly distorted hcp stacking and the atoms are not on high-symmetry
positions. The six free parameters (b/a, c/a, z(PdA), z(PdB), z(V), x(PdB)) influence all distances
indicated in the plot.

The D019 and L12 structures are clearly energetically disfavoured. Although the difference
in atomic volume is small, this appears to be sufficient to disfavour these highly symmetric
structures with no internal degrees of freedom (only the hexagonal axial ratio may be adjusted
in the D019 structure). Both the D022 and D0a structures have additional internal degrees of
freedom whose relaxation allows one to lower the energy. Experimentally, D022 was found to
be the stable phase of Pd3V, but our calculations show the D0a phase to lie about 6 meV/atom
below D022. Again this has to be attributed to the greater flexibility of the D0a structure: while
the atoms in the D022 structure are placed on high-symmetry positions, which reduces the
number of free parameters (at fixed volume) to one, this is not the case for Cu3Ti. Three free
z-coordinates and one free x-coordinate in addition to the axial ratios raise the number of free
parameters in this structure to six, and thereby allow all distances indicated in figure 2 to adjust
for the minimal energy. On freezing the atoms in the D0a lattice at their hcp high-symmetry
positions, the energy difference between Al3Ti and Cu3Ti vanishes.

The apparent discrepancy between theory and experiment can also be explained by the
fact that while experiments are always carried out at finite temperatures, our calculations are
performed at T = 0 K. For the chemically similar binary alloy Ni3Ta, experiment has found a
low-temperature Cu3Ti phase besides the high-temperature D022 crystal [35, 36]. Hence our



The phase diagram and electronic structure of Pd–V alloys 3553

Table 2. Lattice parameters, total energies and energies of formation �E of ordered Pd–V alloys.
The types of the intermetallic compounds are labelled by their prototype structure and the Structure
Report designation where available. Measured lattice parameters for alloys found experimentally
are noted. �HM is the enthalpy of formation calculated using the Miedema model [45]. Distances
are given in Å, energies in electron volts per atom.

Structure Lattice parameters

Alloy Prototype Struct. Report symbol Experiment Theory E �E �HM %Pd

Pd Cu A1 a = 3.88 a = 3.956 −5.206 100

Pd3V Ni3Sn D019 — a = 5.422 −6.285 −0.151 −0.332 75
c = 4.416

Pd3V AuCu3 L12 — a = 3.902 −6.317 −0.183 −0.332 75

Pd3V Al3Ti D022 a = 3.847 a = 3.869 −6.380 −0.246 −0.332 75
c = 7.753 c = 7.848

Pd3V Cu3Ti D0a — a = 5.469 −6.386 −0.252 −0.332 75
b = 4.467
c = 4.808

Pd2V MoSi2 C11b — a = 3.214 −6.648 −0.205 −0.435 67
c = 8.449

Pd2V MoPt2 ā = 2.745 a = 2.790 −6.712 −0.269 −0.435 67
b̄ = 8.240 b = 8.321
c̄ = 3.740 c = 3.720

PdV CsCl B2 — a = 3.095 −6.965 0.097 −0.549 50

PdV NaTl B32 — a = 3.068 −7.109 −0.048 −0.549 50

PdV AuCd B19 — a = 4.348 −7.224 −0.162 −0.549 50
b = 2.712
c = 4.811

PdV CuTi B11 — a = 3.048 −7.246 −0.184 −0.549 50
c = 6.152

PdV AuCu L10 — a = 3.790 −7.249 −0.187 −0.549 50
c = 3.917

PdV2 MoSi2 C11b — a = 3.095 −7.658 −0.022 −0.477 33
c = 9.152

PdV3 AlFe3 D03 — a = 3.025 −8.001 −0.012 −0.373 25

PdV3 Cr3Si A15 a = 4.828 a = 4.816 −8.117 −0.127 −0.373 25

V W A2 a = 3.03 a = 2.994 −8.917 0

calculations indicate the possibility of a similar low-temperature phase transition in Pd3V.
A number of total-energy calculations for Pd3V compounds have been published in

the literature [5, 7, 37–39], concentrating on the structural energy difference between the
L12 and D022 structures. Using linearized muffin-tin-orbital (LMTO) calculations in the
atomic-sphere approximation (ASA), Garbulsky and Ceder [5] find �E = 68 meV/atom,
Wolverton and Zunger [7] find �E = 66.8 meV/atom using the same technique and
�E = 71.5 meV/atom using the linearized augmented-plane-wave (LAPW) method, Lebacq
et al [39] find �E = 69.3 meV/atom using a full-potential LMTO approach. All calculations
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Figure 3. Formation energies of ordered and disordered palladium–vanadium alloys. The labels
give the prototype structure and the reported structure designation where available. The line
indicates the phase stability of ordered alloys.

have been performed for the experimental crystal structures. Hence the small difference
compared to our result of �E = 63 meV/atom is to be attributed to the lack of full structural
relaxation in the earlier calculations. The Cu3Ti structure was not considered in the earlier
DFT calculations. Wolverton and Zunger [38] have also pointed out that the high density
of states of L12-type Pd3V leads to a magnetic instability of the paramagnetic phase which
reduces the structural energy difference to about 39 meV/atom. They have also argued that
due to the high DOS at EF , electron–hole excitations are energetically more favourable in the
L12 than in the D022 structure and that this could explain why the dominant wavevector of the
experimentally observed high-temperature SRO phase is not coincident with that of the LRO
phase [40]. We shall come back to this point below.

3.2. Pd2V

For the compound richest in Pd, all candidate structures are characterized by the absence of
V–V neighbours. For vanadium concentrations larger than 25% it is no longer possible to
avoid V–V nearest-neighbour pairs in superstructures based on the fcc lattice. Among the
possible ordered superstructures listed by Ducastelle [1], only the MoPt2 structure has been
observed experimentally. The MoPt2 structure can be regarded as a superstructure of the fcc
lattice with a minimum of Mo–Mo and a maximum of Mo–Pt bonds: Mo has only two Mo and
ten Pt nearest neighbours; Pt has five Mo and seven Pt neighbours. As figure 1 shows, binary
compounds chemically similar to Pd2V mainly crystallize in this structure. Only for Ni2Ta
and Au2Nb were the MoSi2 (C11b) and AlB2 (C32) structures, respectively, reported. The
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C11b (MoSi2) structure is very similar to the MoPt2 phase, but is based on a tetragonal unit
cell as opposed to an orthorhombic cell for MoPt2. Nearest-neighbour bonds of the minority
atoms are avoided for aspect ratios c/a < 3

√
2 = 4.42. For c/a = 3 the atoms are on the

sites of a bcc lattice. There are two more ideal axial ratios: for c/a = 3
√

2/
√

3 = 2.38,
close-packed layers with 2:1 stoichiometry are stacked in a bcc AB packing (the atoms in layer
B lie on bridge sites of layer A), whereas at c/a = 3

√
2 = 4.42 a close-packed arrangement

is achieved. The C11b structure can be stabilized only by long-range interactions beyond
second neighbours [1]. The C32 structure is based on a hexagonal lattice. For axial ratios of
c/a = √

6 = 2.45 and c/a = √
3/

√
8 = 0.612 it can easily be distorted to an fcc and bcc

phase, respectively. Nevertheless, in the true C32 phase the B–B distance is always less than
the Al–B distance, which in the case of Pd2V would contradict the assertion of an energetical
advantage of Pd–V bonds at this stoichiometry.

All three structures have been calculated with a k-point mesh of 9×9×9. The AlB2 phase
yields a positive energy of mixing and is therefore discarded. Of the two other structures, the
MoPt2 phase turns out to be the more stable one, in agreement with experiment, with a structural
energy difference of 269 meV per atom. When the structure is set up in an orthorhombic cell
the axial ratio of the two shorter sides is a/c = 0.75, close to the value of 1/

√
2 = 0.71 for

a perfect fcc lattice. The experimental lattice parameters in table 2 are means of two sets of
published results [41, 42].

3.3. PdV

Ordered intermetallic compounds of the PdV type are of special interest for us, since the
experimental phase diagram [42,43] shows a solid-solution Pd50V50 fcc phase down to at least
600 K. However, Maldonado and Schubert [44] reported the observation of cubic superlattice
reflections for a 50 at.% alloy after holding it for 12 hours at 600 ◦C.

The possible fcc superstructures stabilized by short-range interactions are CuAu (L10),
CuPt (L11) as well as two further structures (listed as AB and A2B2) which have not been
observed in alloys. The hexagonal superstructures are AuCd (B19) and a further structure that
has not yet been observed. The ordered bcc structures are the CsCl (B2), NaTl (B32) and CuTi
(B11) types. The Pettifor tables (figure 1) suggest CuTi (B11), AuCd (B19) and AuCu (L10) as
possible structures. Fe7W6 (D85) was reported for NiTa and NiNb, but is not a stoichiometric
AB compound. At equiatomic composition it can be formed only at a high concentration of
antisite defects and was therefore not considered.

The AuCu (L10) and AuCd (B19) structures can be described in terms of stacking alternate
rectangular layers of A and B atoms parallel to (100) such that close-packed layers with 1:1
stoichiometry are obtained. Provided that the axial ratio of the tetragonal cell does not deviate
too much from the ideal value unity, ABC stacking of the close-packed layers is achieved in
the AuCu structure. In structures with smaller axial ratios, an intermediate state between a
close-packed structure and bcc 110 layers in bcc stacking is realized, the transformation to
bcc being complete at c/a = 0.707. An AB stacking sequence is realized in the AuCd (B19)
structure, but the bond angles within the layers are closer to those in bcc 110 layers than in
close-packed layers. In the ideal AuCu structure each atom has eight unlike and four like
neighbours; the same coordination is realized in the ideal AuCd lattice. In the CuPt (L11)
structure the atoms are arranged in alternate close-packed layers with a long-period repeat
sequence ABCA′B′C′, leading to a complex rhombohedral cell. In the B2 structure perfect
heterocoordination is realized on the bcc lattice (each atom has eight unlike nearest and six
like second-nearest neighbours), whereas in the B32 structure each atom has four like and
four unlike neighbours. The CuTi (B11) structure may be regarded as an ordered arrangement
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of the bcc structure in which pairs of ordered layers of the two components alternate along
the (001) direction, the tetragonal cell consisting of two bcc cells. For c/a = 2 and equal
interlayer spacings (ideal bcc configuration), each atom has four like and four unlike nearest
neighbours. Our calculated aspect ratio of c/a = 2.02 lies close to that value. A reduced axial
ratio and displacements of the layers along (001) lead to an increase of the number of unlike
neighbours from four to five.

All calculations have been performed using 9 × 9 × 9 k-points; the results are again
compiled in table 2 and figure 3. The common structures based on a basic bcc lattice are all
energetically unfavourable; for the B2 structure the energy of formation is even endothermic
and for the B32 structure it is only weakly exothermic. The B11 structure on the other hand
has an energy of formation that is only 2% smaller than that of the most favourable AuCu (L10)
structure; the B19 structure lies more than 10% above them. The fact that the B2 structure
is energetically so extremely unfavourable suggests that heterocoordination is no longer a
dominant factor in the chemical bonding. In the two energetically most favourable structures,
short V–V bonds are formed: within the bilayers of the B11 structure vanadium atoms come
as close as 2.60 Å. The shortest distances within the pure V layers in the L10 structures are
2.68 Å. This indicates that at this concentration, the formation of V–V bonds is becoming
energetically favourable. In this connection it is worth mentioning that an arrangement of V
atoms along chains occurs also in the A15 (Cr3Si) PdV3 phase (see below).

Altogether however we find that, as figure 3 shows, all atomically ordered PdV phases lie
energetically well above the mixture of Pd2V with PdV3, which rules out another stable phase
at 50 at.% V and T = 0 K.

3.4. PdV2

The Pettifor tables show no ordered phases of composition 1:2 in the chemical environment of
PdV2. To test the energetics of ordered phases related to the bcc structure of pure V, we have
considered the MoSi2 (C11b) structure (cf. section 3.2). Ordered fcc superstructures (Ga2Zr
at this composition) in the V-rich regime have been investigated by Kohan et al [6] and found
to be energetically unfavourable. They were therefore not considered in the present study.

The optimized axial ratio for C11b-type PdV2 is c/a = 2.96; i.e. only a small deviation
from an ideal bcc crystal is predicted. The calculated energy of formation is only very weakly
exothermic (�E = 22 meV/atom), and this is insufficient to stabilize the structure against the
competing Pd2V and PdV3 phases.

3.5. PdV3

In this V-rich regime, the bcc packing of V is expected to be dominant: AlFe3 (D03) is an
ordered superstructure of the bcc lattice but is not reported for any compound similar to PdV3.
The Pettifor tables (see figure 1) show that many binary alloys similar to PdV3 crystallize in a
Cr3Si (A15) phase. V chains located at the faces of the cubic cell stretch along all three main
axes through a Pd bcc lattice. The A15 structure cannot be regarded as derived from any of
the elementary metallic structures. The other structure proposed by the Pettifor table is AuCu3

(L12) which is a superstructure of the fcc lattice.
Again 9 × 9 × 9 k-points were used to determine the ground-state energy. The results are

summarized in table 2. For the L12 structure we calculate an endothermic energy of formation;
the formation of the D03 structure is only very weakly exothermic; the A15 structure is clearly
the energetically most favourable one, in agreement with experiments.
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3.6. Summary—intermetallic compounds

Collecting all of our results together, we have found the stable Pd–V alloy series consisting of
the prototype structures Pd (fcc)–Pd3V (Cu3Ti)–Pd2V (MoPt2)–PdV3 (Cr3Si)–V (bcc). Except
for the Cu3Ti phase, which is just another stacking of the Al3Ti structure, this is in agreement
with the experimental findings. We suspect that the Cu3Ti phase could be the low-temperature
phase of Pd3V.

The calculated lattice constants of the compounds agree with experiment within the bounds
set by the errors in the calculated lattice constants of the pure elements (Pd: �a = +2%—here
the GGA corrections to the LDA value overshoot somewhat, which is characteristic for the
heavier elements—and V: �a = −1.1%—here the LDA error is larger and the GGA leads
to better agreement with experiment). Calculated axial ratios and the values of the internal
coordinates are in excellent agreement with experiment. Unfortunately no experimental values
for the energies of formation are available. In table 2 we list for comparison the values
calculated using the Miedema model [45]. Quite generally, the Miedema values are larger
than our results, especially in the V-rich range. That the Miedema values are much too large is
also confirmed by the available experimental results for the homologous Pt–V system where
the model predictions are too large by a factor of up to two. The model also predicts a different
concentration dependence of the heat of formation �E, which is larger in the V-rich regime,
in disagreement with our results. We shall come back to this point when we discuss the phase
diagram.

The energies of formation can also be extracted from the earlier DFT calculations.
However, as these investigations were concerned primarily with order–disorder transitions
on a basic fcc lattice, the energies of formation are given relative to a hypothetical fcc
phase of V. If we adopt this convention, we find that our energies of formation (�E =
−309,−352,−312 meV/atom for Pd3V, Pd2V and PdV in the stable crystal structures) are
consistently less exothermic than the results obtained by Wolverton and Zunger (WZ) [7] and
Garbulsky and Ceder (GC) [5] using the LMTO-ASA (�E = −348,−393,−367 meV/atom
(WZ), −350,−394,−365 meV/atom (GC)). The A15-type PdV3 compound has been
considered only by Kohan et al [6]; using LMTO-ASA, an energy of formation of �E =
−450 meV/atom (relative to fcc V) was reported. This figure is considerably more exothermic
than our result of −315 meV/atom.

The differences in the calculated energies of formation are to be attributed to the use of
generalized gradient corrections in our calculations, whereas previous calculations used the
local density approximation. We note that the GGA leads to improved cohesive energies and
lattice parameters for the pure metals [46,47]; the present work demonstrates that it also leads
to improved predictions for the heats of formation of binary alloys.

4. Electronic structure of ordered intermetallic compounds

Despite the thorough investigation of the Pd–V alloy system, experimental results on the
electronic structure of such compounds are very rare. Nemnonov et al have performed SXS
measurements on binary alloys of vanadium with late transition elements [48, 49], including
the Pd–V system [50], reporting V Kβ5 and Pd LIII spectra at various compositions. The
V Kβ5 spectrum arises from transitions out of the V 4p states. At larger Pd contents, the
K spectrum develops a two-peak structure with the subband at higher binding energy, attributed
to a hybridization with the 4d states of Pd. This is confirmed by comparing its position
with respect to the Fermi level with the peak in the Pd LIII spectrum reflecting the intensity
distribution in the Pd 5s4d bands. For PdV3, in addition V MII−III spectra measuring the 3p3d
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states have been reported. The peak in the M spectrum coincides with the low-energy peak of
the K spectrum. Altogether the SXS spectra have been interpreted as evidence of a splitting of
about 2.5 to 3 eV between the d-band maxima of the two components, showing little variation
with composition. However, the resolution of the SXS spectra is rather modest and the structure
of the alloys has not been characterized. It remains unclear whether the experiments have been
performed on ordered compounds or on disordered alloys.

More recent experimental investigations on the electronic properties of ordered Pd–V
alloys have been mostly electronic specific heat measurements [51–53], for which the
experimental information is restricted to the immediate vicinity of the Fermi level. For all
stable Pd–V compounds except the A15-type PdV3 phase, a relatively low DOS at EF with
only a weak concentration dependence has been reported. The DOS of the disordered phases is
substantially higher and it has been concluded that the ordered superstructures are stabilized by
the formation of a pseudogap which appears as a result of ordering. The DOS is only slightly
higher for the A15-type compound, but in this case, disordering leads to a small decrease of the
DOS. Ab initio investigations of the electronic spectrum have been presented for the competing
D022 and L12 phases of Pd3V [38, 39]. The electronic structure of the A15 (Cr3Si) phase for
transition metal alloys in general has been treated by Turchi et al [54].

The general trends in the electronic spectra of alloys of a late and an early transition metal
have been discussed by Hausleitner and Hafner [55] as functions of the difference in number
of d electrons, the chemical composition and the degree of structural ordering. The most
important feature is the formation of a complex of strongly hybridized d bands. For alloys
with a large difference in d-band filling such as Pd–V, the d-band complex has a bimodal
character, with the lower part of the band dominated by the orbitals of the late transition metal
(here Pd) and the upper part overlapping with the Fermi level dominated by the states of the
early transition metal. Within each band the bond order for the dominating species changes
sign about in the middle of the d band. The depth of the pseudogap separating the subbands
increases with the degree of atomic ordering; at complete disorder it can disappear almost
completely.

Figure 4 shows the density of states per atom for all stable ordered phases of the Pd–V alloy
series as well as for the metastable AuCu phase. Full lines refer to mean values for all atoms,
dashed and dotted lines to mean values for V and Pd atoms, respectively. The numbers in the
plots give the centres of mass of the respective d bands in eV with respect to the Fermi energy.

We find that all Pd–V compounds except PdV3 conform rather well with the simple
qualitative picture sketched above. At the composition Pd3V, the Fermi level falls very close
to the DOS minimum separating the two subbands. In such a situation, both bonding and
antibonding Pd subbands are almost completely filled; Pd–Pd binding is weak. The V sub-
band is almost empty; hence again V–V binding is weak and the dominant chemical interactions
occur between unlike atoms. With increasing V content, more bonding states in the V subband
become occupied; hence the V–V interactions are strengthened. In the MoPt2-type Pd2V
compound, the DOS minimum is rather broad, but it is clearly apparent that the Fermi level
begins to move into the V-dominated band. In PdV the two subbands have about equal weight
and the Fermi level falls at the centre of the V subband; the pseudogap has moved to higher
binding energies. With increasing V content, the centre of gravity of the Pd d band is shifted
to higher binding energies, by about 0.6 eV on going from Pd3V to PdV, whereas the centre
of the V d band remains almost stationary.

Figure 5 shows the DOSs for the L12, D022 and D0a structures of Pd3V: in the L12 structure,
the DOS shows a very sharp peak precisely at the Fermi level—our findings agree with those of
previous investigations explaining the higher stability of the D022 structure with respect to L12

on the basis of the fact that in the former the Fermi level is shifted into the pseudogap [39]. The
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Figure 4. Total and local densities of states for ordered palladium–vanadium alloys. Full lines refer
to the total DOS per atom, dotted and dashed lines to the average DOSs of palladium and vanadium
atoms, respectively. The numbers in the keys indicate the centres of mass of the corresponding d
bands in eV with respect to the Fermi level.
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Figure 5. Total and local densities of states for differently ordered Pd3V phases (L12, D022 and D0a
from top to bottom). Dotted and dashed lines show the average DOSs of palladium and vanadium
atoms, respectively.

DOSs of the structurally related Cu3Ti and Al3Ti phases are very similar; the higher structural
complexity of the former leads to reduction of the peak heights in the DOS, but the structural
energy difference is much too small to give rise to pronounced differences in the electronic
spectrum. The high DOS at EF of the L12 phase leads to a magnetic instability according to
the Stoner–Wohlfarth criterion, but no spin-polarized calculations have been performed.
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The electronic DOS of the A15-type PdV3 compound differs significantly from that of any
other alloy in this system. The characteristic feature of this structure is quasi-one-dimensional
chains of V atoms extending along all three coordinate directions and coupling only weakly
with the Pd sublattice. In the electronic structure this is reflected by a clear separation of the d
bands; the positions of their centres of mass differ by 2.8 eV, in quite good agreement with the
experimental value of 2.6 eV found by the SXS studies by Nemnonov et al [48]. The position
of the Fermi level close to a sharp peak in the DOS is characteristic for many alloys with the
A15 structure [54].

5. Solid solutions

In most previous studies of order–disorder transitions and phase diagrams, the energetics
of the disordered phases has been calculated from concentration-independent effective cluster
interactions derived from total-energy calculations on a large number of disordered compounds.
Here we adopt a different strategy. Ground-state energies and electronic densities of states for
disordered solid solutions are calculated for supercells representing disordered solid solutions
of the minority atoms in the host lattice (fcc on the Pd-rich and bcc on the V-rich side of the
phase diagram). In both cases the supercells consist of 32 atoms. The distributions of the
two species over the lattice positions within the supercell are created using a random-number
generator; the lattice parameter of the supercell as well as the positions of all of the atoms are
allowed to fully relax.

5.1. V in fcc Pd

Disordered fcc Pd–V phases are investigated in a supercell built of 2 × 2 × 2 fcc unit cells
containing 32 atoms. A k-point mesh of 3 × 3 × 3 is used during the optimization of the
atomic geometry using a conjugate gradient technique; the grid is refined to 5 × 5 × 5 for
the calculation of the DOS. Calculations are carried out for several vanadium concentrations
ranging from 12.5 at.% to 50 at.%. The configurations are checked for their randomness by
requiring the number of nearest neighbours of the two types to be approximately normally
distributed around the mean value (xPdz and xVz Pd and V neighbours, respectively, around
each atom, z being the coordination number).

The mixing energies �E per atom are compiled in figure 3. From the values for 50 at.%
where we have created a number of different configurations, the rms fluctuations of the energy
of formation as a function of the atomic configuration can be estimated to be about ±10 meV
per atom. The gain in the energy of formation from the relaxation of the atomic positions is
between 15 and 40 meV/atom; the atoms are shifted by 0.03 to 0.2 Å from their high-symmetry
positions. Bond lengths in the relaxed structure vary between 2.6 and 2.9 Å; the Pd–Pd and
V–V distances in the clean crystals are 2.8 and 2.6 Å, respectively. The energy gain from
relaxation does not depend systematically on the concentrations of the constituents.

One can immediately see that for low V concentrations up to about 15 at.%, solid solutions
are preferred already at T = 0 K over a mixture of pure Pd and the ordered Pd3V alloy. At
higher V contents, the energies for disordered solutions lie well above those for the ordered fcc
structures (and even above that for the bcc C11b structure at 33 at.% V), which explains
the tendency to long-range order and a preference for heteroatomic bonds. At 50 at.%
the energetically most favourable random configuration has an energy of formation that is
80 meV/atom lower than that of the ordered phase. This makes the stability of a fcc solid
solution at 400 ◦C as indicated by the experimental phase diagram rather unlikely.
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5.2. Pd in bcc V

The bcc supercells in the vanadium-rich part of the phase diagram consist of 4×2×2 bcc unit
cells with 32 atoms; grids of 2 × 4 × 4 and 3 × 6 × 6 k-points are used for the relaxation and
the DOS calculation, respectively. Palladium concentrations range from 12.5 at.% to 50 at.%.

The mixing energies per atom are again plotted in figure 3. The variance of the energy
values at a single concentration is slightly higher than on the fcc side, since due to the less dense
bcc lattice, larger relaxation effects occur in our comparatively small supercell. Although the
atoms do not shift further than about 0.2 Å from their high-symmetry positions (comparable
to the shift in fcc solid solutions), the energy gain from relaxation is as high as 70 meV/atom
in the Pd50V50 alloy. However, for bcc disordered structures the relaxation effects depend on
the atomic concentrations. In Pd6.5V93.5 compounds, atoms only move up to 0.1 Å from their
high-symmetry positions, yielding a gain in the energy of formation of only 15–20 meV/atom.
Bond lengths in the relaxed crystals vary between 2.5 and 2.8 Å; although most of the shortest
bonds are of V–V type, no definite preference for V–V bonds can be observed (also a few Pd–V
and Pd–Pd bonds are as short as 2.5 Å).

Again, at low concentration, solid solutions are energetically preferred over a mixture of
pure V and the ordered A15 phase. The solid solutions were compared with ordered structures
on the bcc lattice (CsCl, NaTl, MoSi2, AlFe3). All of them have formation energies lower than
those of the disordered phases; hence long-range ordering on a bcc lattice with a preference for
heterocoordination is energetically unfavourable. However, ordered intermetallic compounds
such as the CuTi (B11) phase derived from the bcc lattice or completely new structures such
as A15 can be substantially lower in energy than the disordered bcc solid solutions, indicating
a tendency to short-range ordering with some preference for direct V–V bonds.

6. Electronic structure of solid solutions

Figures 6(a) and 6(b) show the DOSs of disordered solutions on the fcc and bcc lattices. On
comparing them to the DOSs of the ordered phases (figure 4), one observes the disappearance
of the pseudogap separating the d bands of the two components. The electronic spectra are also
different from those of the pure metals; in particular the large bonding–antibonding splitting
characteristic for the bcc transitions metals does not appear in the DOSs of the bcc solid
solutions. At approximately equiatomic composition, the DOS is essentially rectangular as
assumed in the Friedel model; at higher concentrations of one species, the DOS is canted to
the side of the majority atoms as assumed in Pettifor’s model [56] for the electronic structure
of transition metal alloys. The increased n(EF ) compared to that of ordered intermetallic
compounds for palladium-rich alloys accounts for the experimentally observed increase of the
paramagnetic susceptibility χ and the electronic specific heat coefficient γ [52].

When considering the partial DOSs around V and Pd atoms individually, the separation
of the bands can still be clearly recognized. The Pd d-band centre of mass is shifted towards
higher binding energies with increasing V concentrations through the whole series of calculated
phases, i.e. also across the fcc–bcc phase boundary. While the position of the vanadium d-band
centre of mass also changes by about 0.35 eV for fcc solids, it remains fairly constant on the bcc
side. The energy interval between Pd and V d-band centres of mass is highest for Pd12.5V87.5

(bcc). Compared to those for the ordered phases, the d bands are located at lower binding
energies, i.e. closer to the Fermi energy, and the energy interval from Pd to V is lower in solid
solutions. This result confirms that the lower energy of mixing for disordered solutions is also
indicated by the DOS.
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Figure 6. Total and local densities of states for disordered palladium–vanadium alloys on fcc (a)
and bcc (b) lattices. Full, dotted and dashed lines refer to the total DOS and the average DOSs of
palladium and vanadium atoms, respectively. The numbers indicate the centres of mass of the d
bands in eV relative to EF . (a) The DOS for random fcc Pd–V alloys. The calculated supercells
have 32 atoms, among which there are 28, 24, 21 and 16 Pd atoms from top to bottom, respectively.
(b) The DOS for random bcc Pd–V alloys. The 32-atom large supercells contain 16, 12, 8 and 4
Pd atoms from top to bottom.
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Figure 6. (Continued)

7. Temperature-dependent ordering

In order to construct the alloy phase diagram, the most favourable temperature-dependent
structure has to be found for every concentration and temperature. The internal energies of all
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systems have been calculated with very high accuracy. On the other hand, we deliberately
make an attempt to use only the simplest statistical methods for calculating the entropic
contributions to the finite-temperature thermodynamic properties and for the determination
of the phase diagram. The justification for this procedure is its success. However, when
comparing with standard approaches based on cluster expansions, one should note that the
pair interactions derived from our data are effective potentials incorporating the effects of both
a global relaxation of the density and a local relaxation of all atomic degrees of freedom. As
discussed in the previous sections, the energy change induced by a local relaxation can be
considerable. Hence our approach also offers some advantages compared to standard cluster
expansion, where local relaxations are usually neglected.

As noted above, Pd–V alloys strive for long-range order (heterocoordination) in Pd-rich
phases but exhibit only short-range order when the majority of atoms are vanadium. The main
formulae used were introduced at the beginning of the paper.

7.1. Long-range order in fcc alloys

The first step for the LRO regime of the phase diagram is to determine the concentration-
dependent nearest-neighbour interchange energy defined asWAB = 1

2 (VAA +VBB)−VAB, with
VIJ being the nearest-neighbour pair interactions. WAB is always negative for compounds that
do not segregate. The energy of mixing for a given configuration can also be expressed in
terms of the VIJ when the relative number of nearest neighbours of specific types is known.
VAA and VBB can be extracted from the pure bulk energies; altogether this yields VAB and WAB

for every calculated disordered configuration (cf. figure 7).
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Figure 7. A linear fit of the interchange energy WAB to the energy of formation of selected
configurations for solid solutions (stars); the double-sided 95% confidence interval is marked
by the dashed lines. The rhombi represent the interchange energies calculated for the ordered
intermetallic compounds.

A least-squares fit shows that a WAB depending linearly on composition is a reasonable
first approximation. Since we are searching for the lower bound of the energies of mixing of
disordered solutions we take the lower bound of the 95% confidence interval of a linear fit
to the calculated values for the WAB to determine the energy of mixing of solid solutions at
T = 0 K.

Around the stoichiometry of energetically preferred long-range-ordered alloys on fcc
superlattices, partially ordered phases form at 0 K. Their free energy of formation is determined
by applying the Bragg–Williams mean-field approximation; the optimal long-range-order
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parameter is given by the variational condition. It turns out that due to the relatively small
difference in energy of mixing of ordered and disordered phases, the concentration range
of preferred ordered structures is already very small at T = 0 K (about ±2 at.% from the
stoichiometric ratio). The critical temperatures may be determined by comparing the free
energies of the partially ordered intermetallic compounds and of the disordered solid solutions
and by calculating the temperature dependence of the order parameter from the variational
condition. If the two values agree, a second-order phase transition is predicted; otherwise
the transition is first order. For Pd–V, a second-order transition is found for the Au–Cu-type
PdV compound (which, however, is only metastable compared to a Pd2V + PdV3 mixture; see
below), whereas the order–disorder transitions in MoPt2-type Pd2V and Al3Ti-type Pd3V are
predicted to be first order, as confirmed by the analysis of the free energy in the vicinity of
Tc (see figure 8). This is a consequence of the distortions from the ideal structures observed
in these phases. However, we have to emphasize that these distortions have been calculated
only by a static optimization of the structure—a consideration of temperature-dependent lattice
distortions would require a full ab initio MD simulation. The critical temperatures TD for the
order–disorder phase transitions are at 1059 K, 1183 K and 727 K for the Al3Ti, MoPt2 and
AuCu fcc superstructures respectively.
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Figure 8. (a) Temperature-dependent long-range-order parameters for the fcc-based Pd–V super-
structures: dotted line—PdV (AuCu); dashed line—Pd2V (MoPt2); full line—Pd3V (Al3Ti). The
vertical lines mark the critical temperatures calculated by equating the free energies of the competing
phases. (b) The difference in free energy of the partially ordered phase (η > 0) versus the disordered
fcc solid solution (η = 0) for L10-type PdV showing a second-order transition (full line) and for
D022-type Pd3V showing a first-order phase transition (dashed line); cf. the text.

7.2. Short-range order in bcc alloys

In the case of short-range order, it is not just the first-nearest-neighbour shell interaction energy
that needs to be considered. The energy of mixing for disordered bcc solutions is obtained
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by setting αn = 0 in equation (5), with Vn standing for the interaction energy of atoms that
are nth-nearest neighbours. For the calculated configurations, all values in equation (5) but
the shell interaction energies are known. In our case, two linearly concentration-dependent
shell interaction energies (V1 and V2) are fitted to the resulting set of equations; the Vi (i � 3)
are assumed to be zero. The fitted interaction energies yield for given short-range parameters
αi �= 0 (i = 1, 2) mixing energies within ±10 meV of the simulated values. The quality of
the fit does not improve on including up to four shell interaction energy values.

For Pd concentrations up to far beyond reasonable values for bcc disordered phases the
nearest-neighbour shell interaction energy V1 is positive while V2 is negative (cf. figure 9),
indicating the preference for nearest neighbours of the same atom type, but second-nearest
neighbours of different types in bcc alloys. The mixing energy of the CsCl structure of
+0.1 eV/atom impressively confirms this result. However, the energetically most favourable
SRO parameters of α1 = 1 and α2 = −1 are topologically not achievable. For a Pd50V50

alloy the long-range-ordered structure that exhibits the most favourable short-range order is
the NaTl phase. Indeed, as figure 3 shows, this structure has a mixing energy of 150 meV/atom
below CsCl and is one of the few stable long-range-ordered bcc phases.
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Figure 9. Concentration-dependent shell interaction energies V1 and V2 for bcc-based Pd–V
superstructures.

The configurational entropy is obtained according to equation (4) by adding a quadratic
correction term to the ideal mixing entropy. Minimizing the free energy with respect to all αn
yields for the optimal SRO parameters

αn = 2xAxBVn(x)

kT
(n = 1, 2). (6)

For low temperatures the so-determined values for the |αn| are outside the geometrically
allowed region for the bcc lattice. In this temperature range, which is below 500 K for a Pd
concentration up to 40 at.% but rises sharply beyond that concentration, the energetically most
favourable short-range-ordered configuration lies on the border of the allowed α-field.

Including only quadratic corrections to the entropy (equation (4)) might result in
unphysical negative values forSSRO in the case of large |αn|. However, in our calculations this is
only the case at low temperatures above 40 at.% Pd. Here the energy difference between short-
range-ordered bcc alloys and the mixture of ordered phases is already very large (cf. figure 3).
A hypothetical order–disorder phase transition lies far above 2000 K, so the inappropriate
approximation for SSRO has no effect on the resulting phase diagram. In cases where this
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temperature–concentration range could not be neglected, corrections beyond second order for
the entropy need to be introduced by extending the approach described in reference [17].

8. Phase diagram construction

Now that we have calculated the free energies for the series of stable intermetallic compounds
as well as the temperature- and concentration-dependent free energies of formation of
substitutional fcc alloys with a certain degree of long-range order and of substitutional bcc
alloys with short-range order, the Pd–V alloy phase diagram can be constructed using the
method of double tangents. The resulting phase diagram (see figure 10) is in very good
agreement with the experimental one [42], especially on the Pd-rich side.

The temperatures for the Pd3V and Pd2V order–disorder phase transitions as well as for
the eutectoid transition of Pd3V + Pd2V to the fcc solid solution agree within ±4%. The
concentration of the eutectoid transition is, at 26.5 at.% V, only 5% below the experimental
value.

On the vanadium-rich side of the phase diagram the disagreement is larger. The dashed
lines in figure 6 show parts of the metastable phase diagram. The theoretically determined
peritectoid phase transition at 75 at.% V is 300 K too low with a Pd2V+α two-phase region for
about 100 K between the experimentally observed phases. The reason for this disagreement is
either a heat of formation for the A15 phase that is too low (by about 25 meV/atom =̂ 300 K)
compared to that of the V-rich compounds, or our neglect of the vibrational contributions to the
entropy. If the phonons in the A15-type PdV3 compound are softer than those in the fcc-based
Pd-rich compounds, the larger vibrational entropy could stabilize the A15 phase to higher
temperatures.

The neglect of the vibrational entropy is probably also responsible for the miscibility gap
at high temperatures having too large a width. Concentrated solid solutions tend to have more
low-frequency modes than dilute random alloys, leading to a lowering of the free energy.

A remarkable point in the theoretical phase diagram is the lack of an fcc solid solution
at low temperature at compositions slightly below 50 at.% V. We find a eutectoid minimum
at 657 ◦C and 45 at.% V. Given the energetics derived from the DFT calculations, we see no
possibility of reconciling theory and this particular detail of the phase diagram: the total energy
of a fcc solid solution close to a 50/50 composition is definitely above that of all fcc compounds
considered in this study, and these energies are in turn above that of a Pd2V + α two-phase
mixture. More exothermic heats of formation of the V-rich phases would make the low-
temperature stability of a 50/50 disordered fcc alloy even more precarious. In this connection
the observation of superlattice reflections for annealed 50/50 alloys is relevant [44]. However,
the structural information is not sufficiently well described to provide a clue to a possible
crystal structure. In any case, even the existence of a possible ordered low-temperature PdV
phase could hardly explain the existence of an—even partially ordered—solid-solution phase
at this composition. The experimental phase diagram in this concentration range certainly
deserves re-examination.

9. Discussion and conclusions

We have presented detailed ab initio density functional studies of the atomic structure,
energetics and electronic properties of crystalline intermetallic compounds and of substit-
utional alloys (treated in a supercell approximation) in the Pd–V system. All crystal structures
have been fully relaxed. The ab initio calculations lead to structural results in full agreement
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alloy phase diagrams. The dashed lines in the lower panel are parts of the metastable phase diagram.

with experiment—except for Pd3V where a low-temperature phase transition to a Cu3Ti-type
structure is predicted. Given the existence of stable intermetallic compounds with this structure
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in the immediate ‘chemical vicinity’ of Pd–V, this result does not seem to be unreasonable and
merits experimental verification.

The energies of formation calculated for various random configurations of fcc and bcc
solutions are used to deduce the interchange energy WAB for fcc Pd-rich solid solutions and
shell interaction energies Vn, n = 1, 2, for bcc V-rich solid solutions. The different treatment
of fcc and bcc substitutional alloys is suggested by the fact that ordered fcc superstructures are
always lower in energy than random fcc alloys, whereas the energetic ordering is inverted for
the bcc phases.

Interchange energy and shell interactions have been used to calculate the free energy
and the optimal degree of ordering of the intermetallic compounds using Bragg–Williams
mean-field theory for the long-range-ordered fcc phases and Warren–Cowley short-range-
order parameters and a second-order expansion of the configurational entropy for the bcc
phases. While the energetics of the competing phases has been calculated very accurately—
using a full-potential all-electron DFT method, gradient corrections to the exchange–
correlation functional, full convergence with respect to the basis set, Brillouin-zone sampling
etc—the statistical-mechanical approach to the free-energy calculation is admittedly—and
deliberately—extremely simplified. This simplification is motivated by the fact that we
intended to calculate the complete phase diagram and not only the coherent part based on
a single basic crystal lattice.

Nevertheless, the calculated phase diagram is in good agreement with experiment—
especially for the Pd-rich part. This is a rather remarkable result, given the modest agreement
of the critical temperatures for order–disorder transitions obtained on the basis of cluster-
expansion calculations. On one hand, the better agreement reflects the improved energetics
produced by the gradient-corrected DFT calculations and the importance of full lattice
relaxations for predicting heats of formation for the solid solutions (remember that the effect
can be as large as 70 meV/atom); on the other hand, it demonstrates that our simplified approach
to the free-energy calculations is adequate. In this context it is worth emphasizing that we
have treated not only a single order–disorder transition (here the good agreement could be
largely fortuitous), but also a sequence of transitions at different compositions. Deviations
between theory and experiment concerning the peritectoid decomposition of the A15-type
PdV3 phase and the width of the two-phase field separating the two terminal solid solutions
at higher temperatures are to be attributed to our neglect of vibrational contributions to the
entropy. The vibrational spectra of both ordered compounds and substitutional solid solutions
can in principle be calculated by ab initio force-constant methods [57] and using ab initio
molecular dynamics, but only at the cost of a very large computational effort.

A qualitative disagreement exists concerning the existence/nonexistence of an fcc solid
solution at �50 at.% Pd and low temperatures. It is difficult to imagine changes in the calc-
ulated energetics that could result in the stability of a disordered 50/50 phase. An ordered
compound, PdV, seems to be much more likely—in agreement with experimentally observed
but unresolved superstructure reflections. In any case, this part of the phase diagram should
be re-examined.

Our work shows that the energies of formation produced by DFT calculations are now
sufficiently accurate to serve as the basis for ab initio phase diagram constructions. Further
improvements in the statistical-mechanical part will undoubtedly be necessary, in particular
as regards the vibrational contributions.

In addition, our study provides deeper insight into the electronic properties of Pd–V alloys.
Each ordered intermetallic compound is characterized by a split-band electronic density of
states, i.e. by a Pd-dominated band at higher binding energies separated by a pronounced DOS
minimum from a V-dominated band around the Fermi level. With increasing V content the Pd
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band is shifted to higher binding energies. The low values of the DOS at EF are in agreement
with electronic specific heat measurements; the d-band shift is in rough agreement with old soft-
x-ray data, but evidently a closer inspection of the d-band structure by means of well-evolved
photoelectron spectroscopy would be of great interest. Disordered solid solutions (both fcc
and bcc) show DOSs of the common-band type which are very close to the rectangular-band
model proposed by Friedel decades ago. Around a 50/50 composition of the alloy the band
is symmetric; for a majority of one species, the DOS is skewed to the side of the majority
atoms as proposed in Pettifor’s band model used as the basis of his semi-empirical analysis
of the heats of formation of d-band alloys. Again, the increase of the DOS at the Fermi level
is in agreement with experiment, but a more detailed spectroscopic investigation seems to be
desirable.
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[24] Blöchl P 1994 Phys. Rev. B 50 17 953
[25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[26] Kumar M 1995 Physica B 391 212
[27] Cowley J M 1960 Phys. Rev. 120 1648
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